Severe Acute Respiratory Syndrome (SARS)

Laboratory Diagnosis

Laboratory Assays for SARS

- Detection of virus
 - EM in clinical specimens (CoV-like particles)
 - Isolation of virus
 - Detection of viral antigens (IHC for tissue, ?sensitivity of IFA or ELISA for respiratory specimens)
 - Detection of viral RNA (PCR)
 - Respiratory secretions
 - Stool specimens
 - Urine specimens
 - Tissue lung and kidney
- Detection of SARS-specific antibody
 - IFA
 - ELISA
 - Neutralization

Laboratory Diagnosis of SARS Infection

- Type and timing of specimen collection (we need to know more)
- Type of assays
 - Sensitivity
 - Specificity
 - Interpretation of results

Coronavirus Particle by Negative Stain EM (Isolate From Patient With SARS)

Thin Section EM

Coronavirusinfected Cells
in BAL of SARS
Patient

Thin Section EM

SARS-CoV Isolation in E6 Vero Cells

Real-Time RT-PCR Assays

- Polymerase region of CoV most conserved
 - Target for Artus commercial kit (Drosten et al. NEJM, 2003)
 - Target for CDC (Ksiazek et al. NEJM, 2003)
 - Target for U Hong Kong (Poon et al., Clin. Chem. 2003)
 - Several other groups
- Nucleocapsid gene most abundant
- Can be exquisitely sensitive, but contamination of specimens can be problematic.
 - Most assays can detect between 10-100 copies of target RNA
- Detection of RNA may not always be equated with infection.

RT-PCR Findings

- Generally more successful early after onset of illness (2-5 days post disease onset), using oropharyngeal washes.
- Impression that the later in the course of illness, deeper respiratory specimens are most likely positive.
- Stool specimens are positive at about the same time as respiratory specimens (Lim et al), and viral load can be very high.
- Virus shedding in stool can occur after disease symptoms have resolved.
- Questions remain whether or not RT-PCR can be used as a single laboratory indicator of SARS-CoV infection.

EIA Antibody Response to SARS CoV

Ksiazek et al NEJM. 2003

Serology Appears Specific

- Tests of sera with documented other human coronavirus infections (OC43 and 229E) show no reaction with the new novel coronavirus by either IFA or ELISA
- Tests of "normal" population of CDC and Emory U. blood donors demonstrate essentially no antibody in this population Similar tests in Hong Kong same findings
- Sensitivity of tests might improve with better antigen (expressed) or different assay formats

SAPER-HEALTHIER-PEOPLE

SARS CoV Testing 50 SARS Patients from Hong Kong

Peiris et al. http://image.thelancet.com, 3/2003

<u>Specimen</u>	<u>PCR</u>	Serology	Either
Resp Sec	22/44		
Stool	10/18		
Serum		35/50	
Any			45/50*
ARI Controls		0/80	
Blood donors		0/200	

^{*4/5} antibody neg patients with serum collected <14 days after onset of illness

What Reagents and Tests Should Be Developed?

- 1. IgM Capture Assay May provide early detection of infection
- 2. Monoclonal Ab Useful for antigen detection in resp. secretions, tissue and reporters for capture EIAs, etc.
- 3. Recomb. Expressed Proteins Useful in configuration of EIAs, Ab production.
- 4. Microarray Chips -- Detection of SARS-CoV in respiratory secretions, stool. ? sensitivity